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Abstract. The explicit forms of the density-density correlation function H ( A x ,  z , ,  z 2 )  for 
the transverse separation A x  - W‘, where W is the interface thickness, are obtained in the 
two-dimensional solid-on-solid model in two different asymptotic cases of a finite system 
in a vanishing external field. The results support the Weeks scaling hypothesis. The form 
of H ,  (Ax/[_, z , /  W, z 2 /  W )  depends on the geometry of the system. The relation between 
W and transverse correlation length 5, has the same form in different external conditions 
localising the interface in solid-on-solid and capillary-wave models. 

1. Introduction 

The structure of the fluctuating interface may be studied from different points of view. 
In one approach, the intrinsic local structure of the interface is investigated. It was 
found that the bare density profile [l-51 and the conditional correlation functions 
[6-81 vary on the microscopic scale independent of the method of localising the 
interface and exist in the limit of unbounded interface fluctuations [ 1-81. 

In this paper we focus our attention on another aspect of the problem of the 
interface structure. We are interested in the effect of the external conditions stabilising 
the interface on the distribution of the matter described by the density profile p ( r )  = p (  z )  
and the density-density correlation function H( r ,  , r ? )  = H ( A x ,  z ,  , z 2 ) .  The interface 
may be localised in the presence of the bulk external field g or in the finite system, 
say in a box L d - ’  x M ,  where M is the size of the system in the longitudinal direction. 
The asymptotic cases of L = a, M < or L < CO, M = CO with the interface pinned to 
the walls, in which the interface is still localised, differ from each other because of the 
anisotropy of the interface region. p and H depend on the interparticle potential and 
on the way the interface is localised. In the strongly fluctuating interface some 
properties of p and H are expected to be universal [9, lo]. 

The exact results obtained for p in lattice models [6,11-131 and capillary-wave 
theory [14,15] suggest that p is of the scaling form 

P ( Z )  = p , ( z * )  z *  = z /  w (1) 
where the interface thickness W depends on the way the interface is localised and, in 
the different asymptotic cases, is given by the expressions (for d = 2 )  

(2gpr)-i14 g # 0, L = M = a; SOS [ 12, 131, capillary waves [15] 

g = 0, M =a, L < a; lattice gas [ 11, SOS [6], w =  [ ~ / ( 2 p r ) ] l ’ ~  
capillary waves [ 151 (2) 1 2( M + l ) / T  g =0,  M <a, L = a; SOS [6] 
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where the effective surface tension 
temperature and k the Boltzmann constant. 

is defined in [16] and p = ( k T ) - ’  with T the 

The explicit forms of p,(z*) have been found to be as follows: 

In the above the function erf is given by 

For d = 2 the explicit form of H has been found in the case of g # 0 in the capillary 
wave model to be 

where f (x )  + 0 for x + CD and z,,, = z , ,  z,,, = z, if z ,  > z, with i , j  = 1,2 ,  p\. and pI are 
vapour and liquid densities respectively, and 

( 5 )  
In the case of g = 0, H has been found for d = 2 in the SOS model [6] in both asymptotic 
cases [6]. The results, limited to the case of Ax = o( W’) are of the form (4b) .  

Recently, Weeks [9] has suggested that in the interface region H is, for d < 3  and 
for Ax >> tl(g), of the scaling form 

pi( z * )  = -dp,( z*)/dz*. 

H(Ax, zI , z 2 )  = H,(Ax*, z:, 2;) Ax* = Ax/5,(g) z* = z /  w. (6) 
Here 5- is the length unit in the direction perpendicular to the field g inducing the 
phase separation. 

This hypothesis is based on the postulate that in the interface region the only 
independent relevant length is the capillary wavelength 

t 2 , ( g )  = I - / [ ( p , -  p,)mgl ( 7 )  

w2- & d ( g ) .  (8) 

related to W according to the following expression: 

The above scaling hypothesis has been verified in the capillary-wave model [15]. In 
the case of g = 0, 5,(g) ceases to be a characteristic length. In the finite system the 
interface is however localised and one may expect that H has the scaling form (6) 
with W given by (2) and with t , ( g )  replaced by the transverse correlation length 5, 
depending on L and/or M. The results of [6] support the postulate that W is the 
length unit in the longitudinal direction but are limited to Ax = o( W’), whereas in 
view of ( 7 )  it is plausible that tL = O( W 2 )  ( d  = 2 ) .  

In this paper we extend the results of [6] to the case of Ax = O( W’). The explicit 
forms of H show that, for d = 2, in both asymptotic cases the scaling hypothesis is 
verified with t , ( g )  replaced by t , ( L )  or t , ( M )  which arise in a natural way from 
exact calculations. t , ( L )  or t , ( M )  satisfy the same relation as t , (g)  in the capillary- 
wave model [ 151: 

t: w-1 = 2pr for d = 2. (9) 
This relation depends only on the surface tension and is of the same form in different 
external conditions and  in different models (for example, SOS and capillary waves), 
and thus seems to be a universal property of the interface. 
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2. Explicit form of H(Ax, z,, z2) for Ax = O( W2) in the SOS (solid-on-solid) model 

The configuration space of the SOS model consists of the sequences ( h , )  of integer 
heights. The probability of configuration ( h , )  is given by [17]: 

p [ ( h , ) l =  2- I  expI-P%(h,)I} (10) 

where the Hamiltonian in the absence of the external field 

is, up to a constant L, proportional to the length of the line dividing the system into 
two regions occupied by different incompressible phases (liquid and gas or up and 
down magnetised domains). The density profile and the density correlation function 
are related to the probability p (  h )  of height h and to the joint probability p z (  h , ,  h , )  of 
heights h,  and h, of the ith and j t h  columns in the following way: 

h , =  z ,  

where 

P ( h ! 9  h J )  = P 2 ( h , 9  h ) ) - p ( h , ) p ( h , ) '  (13) 

Our present calculations are based on the results of [6] for p and p r  in the two 
asymptotic cases L and M.  

2.1. Case M 

The expressions (3.7) of [6 ]  and equations (12) above lead to the following form of H :  

H ( A x ,  z I ,  2') = 
2( hf + 1)' h , = z ,  

where (see (3.5) in [6]) 

s inh(2K)  
cosh(2K)-cos(n /  W j  

A,, = 

with 

K = P J  
and W is given in (2c). 

The cases Ax K M2 and Ax/ M 2  >> 1 will be considered separately. 
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2.1.1. Case Ax<< M 2 .  Let us consider the function f ( p )  = ( A , / A , ) A . y  where 

p = cos( n /  W)  - 1 

and expand f in a Taylor series about p = 0: 

Using the relation 
2 M + 1  ? M - I  

[2(cos( n /  W) - l)]" cos( nk/ W)g( n )  = AT cos( nk/ W)g( n )  
n = l  n = l  

where 

A,g(k) =g ' (k+  1) + g ( k  - 1)  -2g (k )  

and 

Alg'(k) = A2(A;- 'g(  k) )  

we obtain 
A f  2 M + I  

H ( A x ,  z , ,  z , )=  c cos(h,/  W)  cos(h2/ W)  1 f l l l o A i  1 {cos(nAh/ W) 
h l = z l  1-0 1!2' n = I  
h ? = z 2  

+( - I ) "+ '  cos[(n/ W)(hl + h2) l I  - P ( Z I ) P ( Z d .  

The following relations: 
2 M + I  c {cos(nAh/ W ) + ( - l ) " "  cos[(n/ W ) ( h , + h , ) ] } = 2 ( M + 1 ) 6 K r ( A h )  

n = l  

where 8Kr denotes the Kronecker symbol, and 

Ax 
mi d p  = 2sinh' K 

enable us to rewrite (21) in the form 
U 

H ( A x ,  zl, z 2 )  = [2 (M+l ) ' ] - '  c cos(h,/  W)cos(hJ  W ) 2 ( M + 1 )  
M - x  h l = : ,  

l a 2 = : >  

Ax 
4sinh' K 

+ [ S K r ( A h +  l ) + G K r ( A h  - 1) -28Kr (Ah) ]  

The expression (25) may be rewritten in the following scaling form: 

H ( A x ,  z i ,  z2 )=  H,(Ax*, z?, zT)=~,(~~,,)(~-A~*)-P~(zT)P\(zT)+O(AX*) 
where the rescaled distance is given by 

(26) 

(27) 
and W is of the form (9) because in  the 

Ax* =Ax/[,( M )  [, = 4 sinh' K W'. 

Let us note that the relation between 
solid-on-solid model the effective surface tension r is [ 101 

p T = 2  sinh' K. (28) 
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2.1.2. Case Ax >> M 2 .  In this case we are interested in the behaviour of H in the 
asymptotic region of large Ax*. Equation (14) involves the function 

(29) 
The terms with n - M are negligible. In the case of Ax* -+ cc the terms with n 2 3 in 
the sum (14) are also negligible. We truncate this sum on the second term and obtain 

1 
9 IT- 

H,(Ax*, z?, 2 : )  = - 7 p ~ ” ( z ? ) p ~ ” ( z f )  exp(-3Ax*)[ 1 +O(exp(-5Ax*))]. 

The Fourier transform of H is 

The form of H for Ax* -+ 0 is the same as in the case of g # 0 in the capillary-wave 
theory [14,15] whereas in the case of Ax*-+co it is similar but not exactly the same. 
This difference is an  effect of the boundaries of the system. The mean displacement 
of the ‘instantaneous’ interface W is of the order of M and considerable numbers of 
capilllary waves are eliminated. Even in a very large system the walls affect the structure 
of the interface. 

2.2. Case L 

In this case we restrict our considerations to H ( r , ,  r 2 )  for points r ,  and rz  far from 
boundaries because of the boundary condition h ,  = hL = 0. Only distances Ax << L, for 
which the system is translationally invariant in a transverse direction in the asymptotic 
region of L -+ w [6], will be considered. The forms of the functions p and p2 given in 
(3.9) of [6] lead to the expression 

2 sinh K (U-1)”‘  ,, cos(kAh) 
d k ( a - c o s  k)”‘ H(Ax, z , ,  2 2 )  =------ exp[-2 sinh’ K(h:+ h:)/L] 

L h , = : ,  7T 

where 

a = cosh 2 K .  (32) 
As in the previous case we expand the function 

m=( a -cos a - 1  k ) A  

where p =cos  k - 1 about p = 0 and use the relations 1; dk[2(cos k - 1 ) I ”  cos(kx)g( k )  = A; (33) 

and  

d k  cos(kx) = 2SKr(x). (34) 
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The result is as follows: 

h 2 = ; 2  

Using the form (24) o f f (p ) l ,=o  and the form (3) of the density profile (see (4.4) in 
[ 6 ] )  we obtain in the asymptotic region of L + cz the same form as in the case M for 
small Ax*, namely (26) but with the transverse length scaled according to 

Ax* = Ax/(,( L) = L. (36) 

In this case the interface thickness W is given by (2) and so the relation between W 
and (_ is also of the form (9). 

3. Conclusions 

The exact results obtained in the case of g = 0 in the finite two-dimensional solid-on- 
solid system in the asymptotic regions of L = CC and M large but finite or M = and 
L large show that H depends on L and/or  M only via length scales. In  the systems 
considered the Weeks [9] scaling hypothesis is verified. The relation between transverse 
t1 and longitudinal ( W )  characteristic lengths has the same form (9) in both cases 
and in the case of g # 0 in the capillary-wave model. In the case of finite L in which 
t1 = L the relation (9)  is valid in the capillary-wave model as well [15]. Thus this 
relation seems to be the universal feature of the interface, independent of the external 
conditions and details of the interparticle potential. 

The forms of the rescaled functions p,(z*) and H , ( A x * ,  z:, z ; )  depend on how the 
interface is localised and are not universal. In  the cases of g # 0 and finite L the forms 
of p\ and H, are the same but differ from the corresponding functions in the case of 
finite M .  

In  given external conditions, according to the scaling hypothesis, t1 and W stand 
for the only relevant length in the interface zone. If the scaling hypothesis is correct, 
the results obtained in the solid-on-solid model, in which the fluctuations over the 
range of bulk correlation length &, are neglected, should apply to more realistic models 
(with short-range interparticle interactions) in which such fluctuations are taken into 
account. The density profile has indeed the same form in solid-on-solid and in 
lattice-gas models (see (3)) .  I t  is plausible that the same property exhibits the density 
correlation function and our results are not limited to this simple model if T c  T,.  In  
the high-temperature region (i.e. for T + T, ) both the interface scaling hypothesis [9] 
and the solid-on-solid model (as an approximation to a lattice gas) are not correct 
because th becomes important. 
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